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ABSTRACT: This paper introduces a new category whose objects are groupoids and whose 

morphisms are multiplication-commuting Q-fuzzy actions, where Q is a unital quantale. It is shown 

that each such morphism can be equivalently regarded as a Q-fuzzy subgroupoid of a suitably 

constructed groupoid, providing a unified structural perspective on Q-graded fuzzy actions. 

Furthermore, the paper proves that the newly defined category is isomorphic to a certain subcategory 

of Q-Rel, thereby establishing a natural correspondence between the introduced morphisms and Q-

fuzzy relations. These results build a conceptual bridge between algebraic and relational frameworks 

within a unital quantale setting. 
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1. INTRODUCTION 

 

Category theory offers a framework in which 

relationships, transformations, and abs-

tractions can be expressed in a coherent and 

highly general manner ("an abstract setting for 

comparison and analogy" [2]). In this spirit, the 

present paper introduces a new categorical 

construction whose objects are groupoids and 

whose arrows are fuzzy actions, a 

generalization of groupoid actions that 

incorporates degrees of membership and 

uncertainty, as modeled in fuzzy set theory. 

Classical groupoid actions provide a powerful 

mechanism for encoding symmetry and local 

equivalence, yet they rely on exact, binary 

relations. Many real-world and theoretical 

contexts—such as systems with approximate 

symmetries, uncertain dynamics, or partial 

compatibilities—demand a framework that can 

interpolate between fully determined and 

indeterminate interactions. Fuzzy actions 

naturally extend groupoid actions to this 

broader setting, allowing morphisms to encode 

degrees of compatibility between structures 

rather than strict homomorphisms.  

 Concerning the groupoids (small categories 

with inverses), we use the same notation as in 

[5-8].   

 A quantale [13] (Q, ,  ∗) is a complete 

lattice (Q, )  equipped with an associative 

binary operation ∗∶ Q  Q → Q that distributes 

over arbitrary joins (suprema). If ∗ is also 

commutative, then Q is called a commutative 

quantale. When ∗ has a unit element e, the 

quantale is said to be unital. In this paper, the 

greatest lower bound (infimum) of a subset S 

 Q is denoted by inf S, and the least upper 

bound (supremum) by sup S. The bottom 

element of Q is denoted by 0. A unital quantale 

is called integral if its unit element e coincides 

with the top element of the lattice (Q, ). 

 If ∗ is a left-continuous triangular norm (t-

norm) on a complete lattice (L, ) (see, for 

example, [12]), then (L. , ∗), is a 

commutative integral quantale, where ≤ is the 

usual order. If {0, 1} is endowed with the usual 

order  and ∗is an arbitrary t-norm. then ({0, 

1}, , ∗), is a commutative integral quantale. 

 In this paper, we consider certain a 

commutative unital quantale (Q, ,  ∗). For a, 

b  Q, we write a ≥ b iff b  a  
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2. THE NOTION OF MULTIPLICATION 

- COMMUTING FUZZY ACTION 

 

Let G be a groupoid and H a set. Consider the 

set H  G  H. This set can be endowed with a 

groupoid structure where, the composition of 

two elements is defined as 

(x, g1, y)(w, g2, z) = (x, g1g2, z), 

whenever d(g1) = r(g2) and y = w, while the 

inverse of an element is given by 

(x, g, y)-1 = (x, g-1, y). 

For the groupoid X  G  X, the range and 

source maps are defined as follows: 

r(x, g, y) = (x, r(g), x), d(x, g, y) = (y, d(g), y), 

where r(g) and d(g) denote the range and 

source of g in G, respectively. 

Therefore, the unit space of X  G  X can be 

identified with X  G(0) via the mapping:  

(x, u, x) ↦ (x, u). 

If : X → G(0)
 is a map, then the standard 

blow-up groupoid G[X, ]  of G associated 

with  is a subgroupoid of X  G  X. 

Specifically,  

G[X, ]  ={(x, g, y)  X  G  X,  

           (x) = r(g), (y) = d(g)}, 

If  : X → S is a map, then we denote by 

G[X, , ]  ={(x, g, y)  X  G  X,  

           (x) = r(g), (y) = d(g), (x) =  (y)}. 

It is easy to see that G[X, , ]  is a 

subgroupoid of G[X, ]. 

The starting point in the definition of the 

notion of multiplication - commuting fuzzy 

action is the concept of a morphism introduced 

in [9] through the reformulation of the notion 

of a morphism in [16] and [17] in terms of 

groupoid actions. A detailed description of the 

connection between Zakrzewski morphisms 

and groupoid actions, along with some 

interesting examples, can be found in [14]. Let 

us recall the notion of a morphism introduced 

in [9] transposed to the right in this paper: by a 

crisp morphism from a groupoid G to a 

groupoid H, we understand a right action of G 

on H that commutes with the left 

multiplication on H. More precisely, a 

morphism [9] from a groupoid G to a groupoid 

H is given by a map  

 :  H(0) → G(0) 

together with and a map 

(x, g) ↦ x · g 

from 

{(h, g)  H × G :  (d(h)) = r (g)} 

to H satisfying the following conditions: 

1. (d(h · g)) = d(g) for all g  G and h  H 

such that r(g) = (d(h)). 

2. h · (d(h)) = h for all h  H. 

3. If (g1, g2)  G(2), h  H and r(g1) = (d(h)), 

then h· (g1g2)  = (h · g1) · g2. 

4. r(h · g) = r(h) for all g  G and h  H such 

that r(g) = (d(h)). 

5. If (h1, h2)  H(2), g  G and r(g) = (d(h2)), 

then (h1h2)  · g  = h1 (h2 · g2). 

For a morphism as above, if 

H ⋊ G = {(h, g, h · g)  H × G × H,  

                                           r(g) = (d(h))}, 

then H ⋊ G  G[H, ∘d, r]   G[H, ∘d]   

H  G  H (inclusions of subgroupoids). 

 Therefore, a natural definition for a multi- 

plication - commuting fuzzy (right) action 

would be as in [6] as a fuzzy subgroupoid (in 

the sense of [5]) of G[H, ∘d, r] satisfying a 

multiplication – commuting condition. In [7] 

we reformulated the definition of a T-fuzzy 

groupoid (with T denoting a t-norm) removing 

certain restrictions concerning the behavior of 

membership function on the unit space. This 

modification enables the application of 

fuzzification techniques to groupoid 

contractions.. We maintain the same 

perspective in this paper, substituting the t-

norm T with the quantale Q operation ∗. 

 

 Definition 2.1. A Q-fuzzy subgroupoid of a 

groupoid G is a function  : G → Q such that 

1. (g1g2) ≥ (g1) ∗ (g2) for all (g1, g2)  G(2). 

2. (g-1) ≥ (g) for all g  G. 

 Similarly to the approach in [7] we defined 

Q-fuzzy equivalence relation on X as Q-fuzzy 

subgroupoids of X  X.  

 

 Definition 2.2.  A Q-fuzzy equivalence 

relation is a function  : X  X → Q such that  

1.  (x, y) ≥ (x, z) ∗(z, y) for all x, y, z   X 

2.  (x, y) = (y, x) for all x  X. 

Note that we do not impose (x, x) = 1 (see 

[15], [10]), which typically encodes 

reflexivity. Instead, this flexibility allows us to 

consider equivalence relations E  S  S on 

https://en.wikipedia.org/wiki/%E2%86%A6
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subsets S  X. In the classical (crisp) setting, 

if x  S, then (x, x)  E. 

 This approach facilitates the study of 

various fuzzy structures, such as fuzzy sets, 

fuzzy subgroups, fuzzy equivalence relations, 

and fuzzy group actions [1] within a unified 

framework. 

  

 Definition 2.3. Let G and H be two 

groupoids. A multiplication - commuting Q -

fuzzy (right) action of G on H is given by a 

map  

 :  H(0) → G(0) 

together with and a map 

 : G[H, ∘d, r] → Q 

satisfying the following conditions: 

1. (h, g1g2, h′) ≥ (h, g1, h″) ∗ (h″, g2, h′) for 

all (h, g1, h″), (h″, g2, h′)  G[H, ∘d, r].  

2. (h′, g-1, h) ≥ (h, g, h′) for all (h, g, h′) in 

G[H, ∘d, r]. 

3. (multiplication-commuting condition)  

(h, g, h′) = (d(h), g, h-1h′)  

for all (h, g, h′) in G[H, ∘d, r]. 

 

In the following we denote a multiplica-

tion - commuting Q- fuzzy action of G on H 

as in the preceding definition by  

(, ) : G ⇾ H.  

The multiplication-commuting condition 

implies that for (h, g, h′)  G[H, ∘d, r] and 

(h″, h)  H(2) we have: 

(h″h, g, h″h′) = (d(h), g, h-1 h″-1 h″h′) = 

(d(h), g, h-1h′) = (h, g, h′). 

The crisp condition h · (h) = h for all h 

in H, can be encoded requiring that 

membership function of (h, (h), h) ≥ e. 

However, we do not adopt this perspective 

here in order to accommodate groupoid 

contractions of G[H, ∘d, r].  The 

multiplication – commuting condition in 

Definition 2.3 differs from the tentative notion 

of commuting fuzzy actions proposed in [6], 

and it is necessary for enabling the 

composition of fuzzy actions. 

The action  : G[H, ∘d, r] → Q can be 

naturally extended to a function defined on   

HGH, by assigning the value 0 outside the 

set G[H, ∘d, r]. The extension becomes a Q-

fuzzy subgroupoid of HGH. 

Proposition 2.4.  Let G and H be two 

groupoids, (x, g) ↦ x · g be a right (crisp) 

action of a groupoid G on H that commutes 

with the left multiplication on H. Let :  H(0) 

→ G(0) be the map that defines  

 the momentum map of the action.   Let 

  : H  H → Q  

be a Q-fuzzy equivalence relation on H 

satisfying the following invariance property: 

( h·g, h′ · g) = (d(h) ·g, h-1 h′·g) 

 = ( h, h′) 

for all h, h′ H and g  G such that r(h) = r(h′) 

and (d(h)) = (d(h′)) = r(g). If  

 : G[H, ∘d, r] → Q  

is defined by (h, g, h′) = ( h · g, h′), then (, 

) is a multiplication - commuting Q- fuzzy 

action of G on H. 

Proof. In the spirit of Proposition 3.1 [8], since 

( h·g, h′ · g) =  (h, h′),   is a Q-fuzzy 

subgroupoid of G[H, ∘d, r]. Therefore, we 

only need to check the multiplication-

commuting condition. We have 

(h, g, h′) = ( h · g, h′) = (d(h) ·g, h-1 h′·g) = 

(d(h), g, h-1h′) for all (h,g,h′)  G[H, ∘d, r]. 

Consequently, for any morphism in the 

sense of [9] and any fuzzy equivalence relation 

invariant under both action and multiplication, 

a corresponding multiplication - commuting Q 

-fuzzy action can be assigned. In particular, 

this allows the association of a multiplication - 

commuting Q -fuzzy action to any morphism 

in category studied in [3], whose objects are 

the groupoids derived in [11] from discrete 

dynamical systems. Additionally, the 

perspective in Section 4, according to with a 

multiplicative - commuting Q -fuzzy action 

can be viewed as Q-fuzzy subgroupoid of a 

suitable groupoid, can help clarify the nature 

of morphisms in [3].  

 

3. THE CATEGORY GrpFAct 

 

Let us define the new category GrpFAct 

 

Objects: groupoids. 

Morphisms: multiplication-commuting Q-

fuzzy actions  

https://en.wikipedia.org/wiki/%E2%86%A6
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Composition law: Let (12, 12) : G1 ⇾ G2 and 

(23, 23) : G2 ⇾ G3 be two multiplication-

commuting Q-fuzzy actions (morphisms). Let  

 (13, 13) = (23, 23) ∘ (12, 12) : G1 ⇾ G3 

be defined by 

 13 = 12 ∘ 23 (composition of maps). 

13 : G1[G3, 13∘d, r] → Q, defined by 

13(s, x, s′) =  

= sup {12(23(d(s)), x, t)∗23(s, t, s′), t  G2  

               such that (s, t, s′)  G2[G3, 23∘d, r]}, 

for all (s, x, s′)  G1[G3, 13∘d, r].   

 

 Proposition 3. 1. Let (12, 12) : G1 ⇾ G2 

and (23, 23) : G2 ⇾ G3 be two multiplication-

commuting Q-fuzzy actions and let  

(13, 13) = (23, 23) ∘ (12, 12) : G1 ⇾ G3  

Then (13, 13) is a multiplication - commuting 

Q-fuzzy (right) action of G on H. 

Proof.  

1. Let (s, x1, s″), (s″, x2, s′)   G1[G3, 13∘d, r].  

13(s, x1x2, s′)   

= supt{12(23(d(s)), x1x2, t) ∗ 23(s, t, s′)} 

≥ supt,t′ {12(23(d(s)), x1, t′) ∗ 12(t′, x2, t) ∗ 

23(s, t, s′)} 

≥ supt,t′ {12(23(d(s)), x1, t′) ∗ 12(t′, x2, t) ∗ 

23(s, t′ t′-1t, s′)} 

Since, for all t′ such that (23(d(s)), x1, t′), (t′, 

x2, t) G1[G2, 12∘d, r] 12 (23(d(s″))) = r(x2)  

 12(t′, x2, t) = 12(t
-1t′, x2, d(t))  

              = 12(d(t), x2
−1, t-1t′) 

                      = 12(23(d(s′)), x2
−1, t-1t′) 

and  

 23(s, t′ t′-1t, s′)} ≥  

   ≥ 23(s, t′, s″) ∗ 23(s″, t′-1t, s′) 

                        ≥ 23(s, t′, s″) ∗ 23(s′, t-1 t′, s″),  

it follows that  

13(s, x1x2, s′)   

≥ supt,t′{12(23(d(s)), x1, t′) ∗ 23(s, t′, s″) ∗ 

     12(23(d(s′)), x2
−1, t′-1t) ∗ 23(s′, t-1 t′, s″)} 

≥  13(s, x1, s″)  ∗  13(s′, x2
−1, s″)   

≥  13(s, x1, s″)  ∗  13(s″, x2, s′)   

2. Let (s, x, s′)   G1[G3, 13∘d, r]. 

13(s, x, s′) =  

= supt{12(23(d(s)), x, t) ∗ 23(s, t, s′)} 

≥ supt{12(t, x
-1, 23(d(s))) ∗ 23(s′, t-1, s)} 

≥ supt{12(d(t), x-1, t-1) ∗ 23(s′, t-1, s)} 

≥ supt{12(23(d(s′)), x-1, t-1) ∗ 23(s′, t-1, s)} 

= 13(s′, x-1, s′). 

3. Let (s, x, s′)   G1[G3, 13∘d, r]. 

 13(s, x, s′) =  

= supt{12(23(d(s)), x, t) ∗ 23(s, t, s′)} 

= supt{12(23(d(s)), x, t) ∗ 23(d(s), t, s-1s′)} 

= 13(d(s), x, s-1s′) 

 Let us prove the associativity of 

composition. 

 

Proposition 3. 2. Let (12, 12) : G1 ⇾ G2, (23, 

23) : G2 ⇾ G3 and (34, 34) : G3 ⇾ G4 be three 

multiplication-commuting Q-fuzzy actions 

(morphisms). Then  

 (34, 34) ∘ ((23, 23) ∘ (12, 12)) =  

  ((34, 34) ∘ (23, 23)) ∘ (12, 12) 

Proof. Let us denote 

 (13, 13) = (23, 23) ∘ (12, 12) : G1 ⇾ G3 

 (14, 14) = (34, 34) ∘ (13, 13) : G1 ⇾ G4 

 (24, 24) = (34, 34) ∘ (23, 23) : G2 ⇾ G4 

 (′14, ′14) = (24, 24) ∘ (12, 12) : G1 ⇾ G4 

We have 

14 = 13 ∘ 34 = (12 ∘ 23) ∘ 34  

      =  12 ∘ (23 ∘ 34) = 12 ∘ 24 = ′14 

Let (y, x, y′)   G1[G4, 14∘d, r]. 

14(y, x, y′)  

= sups{13(34(d(y)), x, s) ∗ 34(y, s, y′)} 

= sups{supt{12(24(d(y)), x, t)  ∗ 23(34(d(y)), 

t, s)}∗ 34(y, s, y′)}} 

= supt{12(24(d(y)), x, t)  ∗ sups{23(34(d(y)), 

t, s)}∗ 34(y, s, y′)}} 

= supt{12(24(d(y)), x, t)  ∗ 24(y, t, y′)} 

=′14(y, x, y′)  

Hence  

(34, 34) ∘ ((23, 23) ∘ (12, 12)) =  

= ((34, 34) ∘ (23, 23)) ∘ (12, 12) 

 

Identity morphisms: 

 

For each groupoid G let us denote 

 uG = (id, G) : G ⇾ G, where 

d is the domain map of G and  

 G: G[G, d, r] → Q, 

is defined by 

G(s, x, t) = {
e, if t = sx
0, if t ≠  sx

  

 (e is the neutral element in the quantale Q)  

 

Proposition 3. 3. Let (12, 12) : G1 ⇾ G2 be a 

morphism. Then 
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 (12, 12) ∘ (id, 
G2

) = (12, 12) 

 (id, 
G1

) ∘ (12, 12) = (12, 12) 

Proof. Let us denote 

 (, ) = (12, 12) ∘ (id, 
G2

) : G1 ⇾ G2 

Obviously,  = 12 and for all (s, x, s′)   

G1[G2, 12∘d, r], we have 

(s, x, s′) =  

 = supt {12(d(s), x, t) ∗  
G2

(s, t, s′)} 

 = 12(d(s), x, s-1s′) ∗  
G2

(s, s-1s′, s′) 

 = 12(s, x, s′) ∗ e 

 = 12(s, x, s′). 

Thus, (12, 12) ∘ (id, 
G2

) = (12, 12). 

Let us denote 

 (′, ′) = (id, 
G1

) ∘ (12, 12): G1 ⇾ G2 

Obviously, ′ = 12 and for all (s, x, s′)   

G1[G2, 12∘d, r], we have 

′ (s, x, s′) =  

 = supt {G1
(d(s), x, t) ∗ 12(s, t, s′)} 

 = 
G1

(d(s), x, x) ∗ 12(s, x, s′) 

 = e ∗ 12(s, x, s′) 

 = 12(s, x, s′). 

Hence, (id, 
G1

) ∘ (12, 12) = (12, 12). 

 

4. MORPHISMS AS FUZZY GROUPOIDS 

 

Let G and H be two groupoids and 

  : H(0) → G(0)  

be a map. Let us denote 

G⋆𝜎H  = {(g, h), (d(h)) = d(g) and  

                                                   (r(h)) = r(g)} 

G⋆𝜎H is a groupoid under the operations  

   (g1, h1)(g2, h2) = (g1g2, h1h2) (iff d(h1) = r(h2)) 

   (g, h)-1 = (g-1, h-1)  

Since, for the groupoid G⋆𝜎H, the range and 

source maps are  

r(g, h) = (r(g), r(h)) = ((r(h)), r(h)) 

and 

d(g, h) = ((d(h)), d(h)), 

the unit space of G⋆𝜎H can be identified with 

H(0) via the mappings: (v, u)↦u, u ↦ ((u), u). 

Example 4. 1. Let us consider two 

groupoids G  X  ℤ  X, H  Y  ℤ  Y and a 

map  :  Y → X. Then  

G⋆𝜎H  = {((y), m, (y′), y,  n, y′):  

      ((y), m, (y′))  G  and (y, n, y′)  H},  

that can be identified to 

{(y, m, n, y′): (y, n, y′)  H, ((y), m, (y′)) 

 G}  Y  ℤ  ℤ  Y 

Furthermore, according to the results in 

Section 2 [4], G⋆𝜎H can be identified to 

{(y, k(y),(y′)(G) + t k(y),(y)(G), ky,y′(H) + s 

ky,y(H), y′): (y, y′) (r,d)(H), ((y), (y′)) 

(r,d)(G), s, t  ℤ}. 

Therefore, in this case G⋆𝜎H can be 

characterized by two families of integers  

{ky,y′(H)}(y, y’) and {k((y),(y’))(G)}((y),(y’)). 

 

 Proposition 4. 2. If  : G⋆𝜎H → Q is a Q-

fuzzy subgroupoid of G⋆𝜎H, then  

 : G[H, ∘d, r] → Q 

(h, g, h′) = (g, h-1h′),  

for all (h, g, h′)  G[H, ∘d, r], defines a 

multiplication-commuting Q-fuzzy action 

(morphism) (, ) : G ⇾ H. 

Proof. 

1. Let (h, g1, h″), (h″, g2, h′)   G[H, ∘d, r]. 

(h, g1g2, h′) = (g1g2, h
-1h′)  

= (g1g2, h
-1 h″ h″-1h′) 

≥ (g1, h
-1 h″) ∗ (g2, h″-1h′) 

= (h, g1g2, h″) ∗ (h″, g1g2, h′) 

2. If (h, g, h′)  G[H, ∘d, r], then 

(h, g, h′) = (g, h-1h′)  

≥ (g-1, h′-1h) 

= (h′, g-1, h). 

 

Proposition 4.3. If (, ) : G ⇾ H a 

multiplication-commuting Q-fuzzy action 

(morphism), then 

(, ) : G⋆𝜎H → Q 

(, )(g, h) = (r(h), g, h) 

is a Q-fuzzy subgroupoid of G⋆𝜎H.  

Proof.  

1. If ((g1, h1), (g2, h2))  G⋆𝜎H(2), then 

(, ) (g1g2, h1h2) = (r(h1), g1g2, h1h2) 

 ≥  (r(h1), g1, h1) ∗ (h1, g2, h1h2) 

 = (r(h1), g1, h1) ∗ (d(h1), g2, h2) 

 = (r(h1), g1, h1) ∗ (r(h2), g2, h2) 

 = (, )(g1, h1) ∗ (, )(g2, h2). 

2. If (g, h)  G⋆𝜎H, then 

(, ) (g, h) = (r(h), g, h) 

 ≥  (h, g-1, r(h)) 

 =   (d(h), g-1, h-1) 

 = (, ) (g
-1, h-1) 
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5. CONNECTION WITH THE Q-REL 

CATEGORY 

 

 The category Q-Rel has sets as objects and 

fuzzy Q-valued relations as morphisms, with 

composition defined via quantale joins and 

multiplication. 

Let us recall that, given sets X and Y, a Q-

valued fuzzy relation is a function 

 R : X  Y → Q 

interpreting R(x,y) as the degree to which x is 

related to y. Given R : X  Y → Q and S : Y  

Z → Q, their composite is S ∘ R : X  Z → Q 

defined by 

 S ∘ R (x, z) = sup{R(x, y) ∗ S(y, z), y  Y} 

The identity on a set X is 1X : X  X → Q 

 1X(x, x′) = {
e, if x = x'

0, if x ≠ x'
  

Let us consider the following subcategory of 

Q-Rel, that we call Q-ARel 

Objects: sets endowed with groupoid 

structure. 

Morphisms: fuzzy Q-valued relations R : G  

H → Q, with the property that G and H are 

groupoids and there is a map  : H(0) → G(0)  

such that d(h1) = r(h2)  

1. R(g, h) = 0 if (g, h)  G⋆𝜎H 

2. R(g1g2, h1h2) ≥ R(g1, h1) ∗ R(g1, h1) for 

all (g1, h1), (g2, h2)  G⋆𝜎H such that 

d(h1) = r(h2). 

3. R(g-1, h-1) ≥ R(g, h) for all (g, h)  

G⋆𝜎H 

 Let us call a relation Q-valued relations R : 

G  H → Q that satisfies the above conditions 

1, 2 and 3 multiplicative-commuting Q-fuzzy 

relation.  

 Let us remark that if R: G1  G2  → Q and 

S: G2  G3 → Q are multiplicative-commuting 

Q-fuzzy relations, then S ∘ R is a 

multiplicative-commuting Q-fuzzy relation. 

Indeed, let R : G2
(0)

 → G1
(0)

 the map associated 

to R and S : G3
(0)

 → G2
(0)

 the map associated 

to S and let  = σS⋄R= R∘S. If (x, s)  

G1⋆𝜎G3, then for every t  G2, (x, t)   

G1⋆σR
G2 or (t, s)   G2⋆σS

G3. Thus, if (x, s)  

G1⋆𝜎G3, σS⋄R(s, t) = 0.  

 Let (x1, s1), (x2, s2)  G1⋆𝜎G3 such that d(s1) 

= r(s2). Then  

{t: (x1x2, t)  G1⋆σR
G2,  (t, s1s2)  G2⋆σS

G3} 

 { t′t′-1t, t, t′  G2, such that (x1, t′) G1⋆σR
G2 

and (t′, s1)  G2⋆σS
G3}.  

Hence, 

S ∘ R(x1x2, s1s2) ≥ supt{R(x1x2, t) ∗ S(t, s1s2)} 

≥ supt,t′{R(x1x2, t′t′
-1t) ∗ S(t′t′-1t, s1s2)} 

≥ supt,t′{R(x1, t′) ∗ R(x2, t′
-1t) ∗ S(t′, s1) ∗  

S(t′-1t, s2)}  

≥ supt′{R(x1, t′) ∗ S(t′, s1)} ∗ supt″{R(x2, t″)} ∗ 

S(t″, s2)} 

≥ S ∘ R(x1, s1) ∗S ∘ R(x2, s2) 

If (x, s)  G1⋆𝜎G3, then  

 S ∘ R(x-1, s-1) 

  = supt{R(x, t-1) ∗ S(t-1, s)}= S ∘ R(x, s). 

Obviously, 1G : G  G → Q is a multiplicative-

commuting Q-fuzzy relation with respect to  

= id: G(0) → G(0). 

 

 Proposition 5. 1. The category GrpFAct is 

isomorphic to the subcateqory Q-ARel of Q-

Rel. 

Proof. Let us define the following functors: 

1. F1 : GrpFAct → QARel 

G ↦ G, F1((, )) = R(, ), 

where if (, ) : G ⇾ H is a multiplication - 

commuting fuzzy action of G on H, then 

R(, ) : G  H → Q is the Q-valued fuzzy 

relation defined by 

R(, ) (g, h) =  {
α(r(h), g, h), if (g, h) ∈ G⋆σH

0,                            otherwise
 

that is a multiplicative-commuting Q-fuzzy 

relation.  

2. F2 : QARel → GrpFAct 

G ↦ G, F2(R) = (R, R). 

where if R is a multiplicative-commuting Q-

fuzzy relation and R : H(0) → G(0) is he map 

associated to R, then R : G[H, , r] → Q is 

defined by  

 R(h, g, h′) = R(g, h-1h′)  

for all (h, x, h′)  G[H, , r]. It is easy to check 

that (R, R) is multiplication - commuting Q - 

fuzzy action of G on H. 

 If (g, h)  G⋆𝜎H,  

 F1(F2(R)) (g, h) = R(r(h), g, h) = R(g, h). 

Moreover, for (h, x, h′)  G[H, , r],  

F2(F1(, )) (h, g, h′) = F2(R(, )) (h, g, h′)= 

             = R(, )(g, h-1h′) = (r(h-1h′), g, h-1h′)  

             = (d(h), g, h-1h′)  = (h, g, h′) 
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Since F1F2 =  1QARel and F2F1 = 1GrpFActit 

follows that GrpFAct and Q-ARel are 

isomorphic categories. 

 

6. CONCLUSION  

 

In this paper we introduced a category whose 

objects are groupoids and whose morphisms 

are Q-fuzzy actions compatible with the 

groupoid structure. This categorical viewpoint 

not only clarifies the compositional nature of 

fuzzy actions compatible with the groupoid 

structure but also opens the door to further 

abstractions 

 By showing that these morphisms can be 

realized as Q-fuzzy subgroupoids of a suitably 

chosen ambient groupoid, we provided a 

structural interpretation that clarifies the nature 

of Q-graded fuzzy behavior within groupoids. 

 Moreover, the categorical isomorphism 

with a subcategory of Q-Rel demonstrates that 

the proposed framework fits naturally within 

the broader relational semantics induced by a 

unital quantale. 
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