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ABSTRACT: This paper introduces a new category whose objects are groupoids and whose
morphisms are multiplication-commuting Q-fuzzy actions, where Q is a unital quantale. It is shown
that each such morphism can be equivalently regarded as a Q-fuzzy subgroupoid of a suitably
constructed groupoid, providing a unified structural perspective on Q-graded fuzzy actions.
Furthermore, the paper proves that the newly defined category is isomorphic to a certain subcategory
of O-Rel, thereby establishing a natural correspondence between the introduced morphisms and Q-
fuzzy relations. These results build a conceptual bridge between algebraic and relational frameworks
within a unital quantale setting.
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1. INTRODUCTION Concerning the groupoids (small categories
with inverses), we use the same notation as in
Category theory offers a framework in which [5-8].
relationships, transformations, and abs- A quantale [13] (Q, <, *) is a complete
tractions can be expressed in a coherent and lattice (Q, <) equipped with an associative
highly general manner ("an abstract setting for binary operation *: Q x Q — Q that distributes
comparison and analogy" [2]). In this spirit, the over arbitrary joins (suprema). If * is also
present paper introduces a new categorical commutative, then Q is called a commutative
construction whose objects are groupoids and quantale. When * has a unit element e, the
whose arrows are fuzzy actions, a quantale is said to be unital. In this paper, the
generalization of groupoid actions that greatest lower bound (infimum) of a subset S

incorporates degrees of membership and
uncertainty, as modeled in fuzzy set theory.
Classical groupoid actions provide a powerful
mechanism for encoding symmetry and local
equivalence, yet they rely on exact, binary
relations. Many real-world and theoretical
contexts—such as systems with approximate
symmetries, uncertain dynamics, or partial
compatibilities—demand a framework that can
interpolate between fully determined and
indeterminate interactions. Fuzzy actions
naturally extend groupoid actions to this . Y
broader setting, allowing morphisms to encode 1}, <, %), is a commutative integral quantale.

degrees of compatibility between structures In this paper, we consider certain a

rather than strict homomorphisms. commutative unital quantale (Q, <, *). For a,
beQ,wewritea>biffb<a

c Q is denoted by inf S, and the least upper
bound (supremum) by sup S. The bottom
element of Q is denoted by 0. A unital quantale
is called integral if its unit element e coincides
with the top element of the lattice (Q, <).

If * is a left-continuous triangular norm (t-
norm) on a complete lattice (L, <) (see, for
example, [12]), then (L. <, *), is a
commutative integral quantale, where < is the
usual order. If {0, 1} is endowed with the usual

order < and *is an arbitrary t-norm. then ({0,
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2. THE NOTION OF MULTIPLICATION
- COMMUTING FUZZY ACTION

Let G be a groupoid and H a set. Consider the
set H x G x H. This set can be endowed with a
groupoid structure where, the composition of
two elements is defined as

X, g1, Y)W, &, 2) = (X, g122, 2),
whenever d(g1) = r(g2) and y = w, while the
inverse of an element is given by

x gy '=xghy.

For the groupoid X x G x X, the range and
source maps are defined as follows:
1(x, g ¥) = (x, 1(g), %), d(x, &, y) = (¥, d(g), ),
where r(g) and d(g) denote the range and
source of g in G, respectively.
Therefore, the unit space of X x G x X can be
identified with X x G via the mapping:

(X, u, x) = (x, u).

If 6: X = G is a map, then the standard
blow-up groupoid G[X, o] of G associated
with o is a subgroupoid of X x G x X.
Specifically,

G[X, o] ={(x, g ¥y) € XxGxX,

o(x) =r(g), o(y) = d(g)},
If p: X > S is a map, then we denote by

G[X, o0, p] ={(x,8,y) € XxGxX,

o(x) =1(g), o(y) = d(g), p(x) = p (¥)}.
It is easy to see that G[X, o, p] 1is a
subgroupoid of G[X, o].

The starting point in the definition of the
notion of multiplication - commuting fuzzy
action is the concept of a morphism introduced
in [9] through the reformulation of the notion
of a morphism in [16] and [17] in terms of
groupoid actions. A detailed description of the
connection between Zakrzewski morphisms
and groupoid actions, along with some
interesting examples, can be found in [14]. Let
us recall the notion of a morphism introduced
in [9] transposed to the right in this paper: by a
crisp morphism from a groupoid G to a
groupoid H, we understand a right action of G
on H that commutes with the Ileft
multiplication on H. More precisely, a
morphism [9] from a groupoid G to a groupoid
H is given by a map

c: HO - GO
together with and a map
x,grx-g
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from
{(h,g) e HxG: o(d(h)) =r (2)}
to H satisfying the following conditions:
1. o(d(h - g))=d(g) forallg e Gandh e H
such that r(g) = o(d(h)).
2. h-o(d(h))=hforallh € H.
3. If (g1, 22) € G?, h € H and r(g)) = o(d(h)),
then h- (gig2) =(h - g1) - 2.
4. r(h - g)=r(h) forall g € G and h € H such
that r(g) = o(d(h)).
5. If (hi, hy) € H?, g € G and r(g) = o(d(hy)),
then (hih2) - g =hi (h2 - ).
For a morphism as above, if
HxG={(h,g,h-g)e HxGxH,
1(g) = o(d(h))},
then H X G < G[H, ood, r] © G[H, cod]
H x G x H (inclusions of subgroupoids).
Therefore, a natural definition for a multi-
plication - commuting fuzzy (right) action
would be as in [6] as a fuzzy subgroupoid (in
the sense of [5]) of G[H, oed, r] satisfying a
multiplication — commuting condition. In [7]
we reformulated the definition of a T-fuzzy
groupoid (with T denoting a t-norm) removing
certain restrictions concerning the behavior of
membership function on the unit space. This
modification enables the application of
fuzzification  techniques to  groupoid
contractions.. We maintain the same
perspective in this paper, substituting the t-
norm T with the quantale Q operation *.

Definition 2.1. A Q-fuzzy subgroupoid of a
groupoid G is a function y : G — Q such that
1.y(2122) > v(g1) * v(g2) for all (g1, g2) e GP.
2.v(gH>y(g) forall g € G.

Similarly to the approach in [7] we defined
Q-fuzzy equivalence relation on X as Q-fuzzy
subgroupoids of X x X.

Definition 2.2. A Q-fuzzy equivalence
relation is a function € : X x X — Q such that
1. &(x,y)=>E&(x, z) xE(z, y) forall x,y,z e X
2. &(x,y)=¢&(y, x) forall x € X.

Note that we do not impose §(x, x) = 1 (see
[15], [10]), which typically encodes
reflexivity. Instead, this flexibility allows us to
consider equivalence relations E — S x S on
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subsets S < X. In the classical (crisp) setting,
if x ¢ S, then (x, x) ¢ E.

This approach facilitates the study of
various fuzzy structures, such as fuzzy sets,
fuzzy subgroups, fuzzy equivalence relations,
and fuzzy group actions [1] within a unified
framework.

Definition 2.3. Let G and H be two
groupoids. A multiplication - commuting Q -
fuzzy (right) action of G on H is given by a
map

c: HY - GO
together with and a map
o : G[H, ood, 1] > Q
satisfying the following conditions:
1. au(h, gig2, h") > au(h, g1, h"”) * a(h”, g2, h') for
all (h, g1, h"), (h", g2, h’) € G[H, oe°d, 1].
2. a(b’, g', h) > a(h, g, h') for all (h, g, h') in
G[H, oed, 1].
3. (multiplication-commuting condition)
a(h, g, h') = a(d(h), g, h'h")
for all (h, g, h') in G[H, c°d, r].

In the following we denote a multiplica-
tion - commuting Q- fuzzy action of G on H
as in the preceding definition by

(c,a): G — H.

The multiplication-commuting condition
implies that for (h, g, h") € G[H, oe°d, r] and
(h", h) € H® we have:

a(h"h, g, h"h’) = a(d(h), g, h"' h" h"h") =
a(d(h), g, h''h") = a(h, g, h').

The crisp condition h - o(h) = h for all h
in H, can be encoded requiring that
membership function of a(h, o(h), h) > e.
However, we do not adopt this perspective
here in order to accommodate groupoid
contractions of G[H, ood, r1]. The
multiplication — commuting condition in
Definition 2.3 differs from the tentative notion
of commuting fuzzy actions proposed in [6],
and it 1s necessary for enabling the
composition of fuzzy actions.

The action a : G[H, ced, r] &> Q can be
naturally extended to a function defined on
HxGxH, by assigning the value 0 outside the
set G[H, oed, r]. The extension becomes a Q-
fuzzy subgroupoid of HxGxH.
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Proposition 2.4. Let G and H be two
groupoids, (X, g) = x - g be a right (crisp)
action of a groupoid G on H that commutes
with the left multiplication on H. Let 6: H©
— G be the map that defines
the momentum map of the action. Let

0:HxH—>Q
be a Q-fuzzy equivalence relation on H
satisfying the following invariance property:
8(h-g,h'-g)=3(d(h) g h"'h'"g)

=3(h, h')
forall h, h'e Hand g € G such that r(h) =r(h’")
and o(d(h)) = o(d(h")) = r(g). If

o : G[H, ood, 1] > Q

is defined by au(h, g, h") =3( h - g, h’), then (o,
o) is a multiplication - commuting Q- fuzzy
action of G on H.
Proof. In the spirit of Proposition 3.1 [8], since
O( h-g, h" - g) = &(h, h'), a is a Q-fuzzy
subgroupoid of G[H, cod, r]. Therefore, we
only need to check the multiplication-
commuting condition. We have
a(h, g, h') =8(h - g, h') =3(d(h) -g,h"' h"-g) =
a(d(h), g, h'h’) for all (h,g,h’) € G[H, cod, r].

Consequently, for any morphism in the
sense of [9] and any fuzzy equivalence relation
invariant under both action and multiplication,
a corresponding multiplication - commuting Q
-fuzzy action can be assigned. In particular,
this allows the association of a multiplication -
commuting Q -fuzzy action to any morphism
in category studied in [3], whose objects are
the groupoids derived in [11] from discrete
dynamical  systems.  Additionally, the
perspective in Section 4, according to with a
multiplicative - commuting Q -fuzzy action
can be viewed as Q-fuzzy subgroupoid of a
suitable groupoid, can help clarify the nature
of morphisms in [3].

3. THE CATEGORY GrpFAct
Let us define the new category GrpFAct

Objects: groupoids.

Morphisms:
fuzzy actions

multiplication-commuting Q-
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Composition law: Let (612, a12) : G1 — G2 and
(023, a23) : G2 — G3 be two multiplication-
commuting Q-fuzzy actions (morphisms). Let

(o13, a13) = (623, 023) © (G12, a12) : G1 — G3
be defined by

G13 = G12 © 023 (composition of maps).

a3 : Gi[Gs, o130d, r] = Q, defined by
o13(s, X, 8') =
=sup {a2(c23(d(s)), X, t)*ans(s, t, s'), t € G2

such that (s, t, s') € G2[Gs, 6230d, 1]},

for all (s, X, s) € G1[Gs, G13°d, 1].

Proposition 3. 1. Let (12, az) : G1 = G2
and (023, a23) : G2 — G3 be two multiplication-
commuting Q-fuzzy actions and let
(o13, au13) = (023, 023) © (12, A12) : G1 — G3
Then (o13, 013) is a multiplication - commuting
Q-fuzzy (right) action of G on H.

Proof.

1. Let (s, x1, 8"), (s”, X2, 8") € Gi1[Gs, c130d, 1].
ou13(s, X1X2, ")

= supt{a12(023(d(s)), x1xX2, t) * a23(s, t, s")}

> supey {ai2(o23(d(s)), x1, t') * ana(t, X2, t) *
o23(s, t, ')}

> supge {a12(023(d(s)), X1, t') * ana(t, x2, t) *
a3(s, t' t7t, s")}

Since, for all t' such that (c23(d(s)), x1, t'), (t',
x2, t)€ G1[G2, o120d, 1] 012 (023(d(s"))) = 1r(X2)

an(t, X2, t) = Otlz(t_lt', x2, d(t))

= aua(d(b), x3 1, t1t)
= aa(o23(d(s), x5 1, t1t")
and
a3(s, t' t"1t, )} >
> 023(s, t', 8”) * ans(s”, t'1t, s")
> 023(s, t, ") * os(s’, t1 ', s7),
it follows that
ou3(s, X1x2, 8")
> supge{a12(c23(d(s)), xi1, t') * as(s, t', s”) *

a12(623(d(s")), x5 1, t1t) * os(s, 1t s")}
> ous(s, x1,8") * ous(s, x31,s")
> au3(s, X1, 8") * ous(s”, x2, s')

2. Let (s, x,8") € Gi[G3, o13°d, 1].

o13(s, X, ') =

= supi{ai2(o23(d(s)), x, t) * a23(s, t, s')}

> supe{aia(t, X1, 623(d(s))) * ans(s’, t1, s)}
> sup{oua(d(t), x1, t1) * ans(s’, t1, s)}

> sup{ai2(c23(d(s)), X1, t1) * as(s’, t1, s)}

=aus(s, x°1, 8.
3. Let (s, x,s") € Gi[G3, o130d, 1].
a13(s, X, 8') =
= supt{ai2(o23(d(s)), x, t) * a23(s, t, s)}
= supi{o12(523(d(s)), X, t) * a23(d(s), t, s7's")}
= a3(d(s), x, s°'s")
Let us prove the associativity of
composition.

Proposition 3. 2. Let (612, a12) : G1 — Go, (023,
023) : G2 = Gz and (034, a34) : G3 — Ga be three
multiplication-commuting Q-fuzzy actions
(morphisms). Then
(034, a34) © ((023, A23) © (O12, A12)) =
(o34, 034) © (523, 023)) © (C12, Q12)
Proof. Let us denote
(o13, a13) = (023, 023) © (12, aL12) : G1 = G3
(14, aL14) = (034, a34) © (013, aui3) : G1 = Gy
(G24, 024) = (G34, 034) © (523, 0123) : G2 = Ga
(c'14, a'14) = (024, 024) © (G12, A12) : G1 — Gy
We have
G14=G13° 034 = (G12 © G23) © G34
= 012°(023°034) =0C12°024=0G'14
Let (y, X, y") € Gi[Ggs, o140d, 1].
a14(y, X, y')
= sups{a13(c34(d(y)), X, 8) * 34(y, s, ¥')}
= sups{supt{a12(c24(d(y)), X, t) * c23(c34(d(y)),
t, s)}* aza(y, s, y)}}
= supt{a12(c24(d(y)), X, t) * sups{os(cza(d(y)),
t, )} * aza(y, s, y)}}
= supr{aiz(c24(d(y)), X, t) * a24(y, t, y)}
=o14(y, X, y')
Hence
(034, 034) © ((023, a23) © (O12, A12)) =
= ((034, 034) © (023, 023)) © (12, QAL12)

Identity morphisms:

For each groupoid G let us denote
uc = (id, pg) : G — G, where
d is the domain map of G and
ue: G[G, d, r] »> Q,
is defined by
e ift = sx

Ma(s, x, ) = {O, ift # sx
(e is the neutral element in the quantale Q)

Proposition 3. 3. Let (612, a12) : G1 = Gabe a
morphism. Then
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(012, au2) © (id, pg ) = (012, aL12)

(id, pg ) © (012, a12) = (G12, O12)
Proof. Let us denote

(o, @) = (o12, a12) ° (id, “Gz) :G1 = G2
Obviously, ¢ = o12 and for all (s, x, s') €
G1[Ga, o120d, 1], we have
o(s, x,8") =

= supt {au2(d(s), X, 0 * g, (5. 1)}

= au2(d(s), x, s7!s") * K, (5, sls', §)

=ai(s, x,8') x e

= a2(s, X, s').
Thus, (c12, a12) © (id, uGz) = (012, OL12).
Let us denote

(¢',a') =(id, g ) © (012, 0112): Gi = G2
Obviously, ¢’ = 12 and for all (s, x, s') €
G1[Ga2, o120d, 1], we have
o' (s, x,8")=

= supx {ucl(d(s), X, t) * aia(s, t, 8")}

= uGl(d(s), X, X) * ou12(s, X, s')

=e * as, X, 8)

= a2(s, X, s').
Hence, (id, uGl) o (12, a12) = (O12, CL12).

4. MORPHISMS AS FUZZY GROUPOIDS

Let G and H be two groupoids and
c:HO® » GO
be a map. Let us denote
GxoH = {(g, h), o(d(h)) = d(g) and
o(r(h)) = r(g)}

Gx*,H is a groupoid under the operations

(g1, h1)(g2, ho) = (€182, hihy) (iff d(h1) = r(h2))

(g h)y' = (g, h')
Since, for the groupoid G*,H, the range and
source maps are

1(g, h) = (1(g), r(h)) = (5(r(h)), r(h))

d(g, h) = (s(d(h)), d(h)),

the unit space of Gx,H can be identified with
H®© via the mappings: (v, u)=u, u = (c(u), u).

Example 4. 1. Let us consider two
groupoids G c X x ZxX,HCYxZxY and a
map G : Y — X. Then

GrH = {(o(y), m, o(y), y, n,y):

(o(y), m, o(y")) € G and (y,n,y) € H},

that can be identified to

and
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{(y,m,n,y): (v,n,y') € H, (c(y), m, 5(y")
€GCYXZxZxY
Furthermore, according to the results in
Section 2 [4], G*,H can be identified to

{(y, Ko(y).o)(G) + t Ko(y).om)(G), kyy(H) +
kyy(H), ¥): 3 ¥) e(d)H), (o), o)
e(r,d)(G), s, t € Z}.

Therefore, in this case G*;H can be
characterized by two families of integers

tkyy(H)}(y,y) and {K(o(y),o)(G) } (5(x),00y°)-

Proposition 4. 2. If y : Gx,H —> Q is a Q-

fuzzy subgroupoid of Gx,H, then

oy : G[H, cod, 1] > Q

oy(h, g, h') =y(g, h'h),
for all (h, g, h') € G[H, oe°d, r], defines a
multiplication-commuting Q-fuzzy action
(morphism) (o, ay) : G — H.
Proof.
1. Let (h, g1, h"), (h", g2, h") € G[H, oed, 1].
ou(h, gi1g2, ') = y(gi1g2, h'h)

=v(gig2, i h" h"'h')

>y(g1, b h") = y(g2, h"'h)

= aY(h: g182, h") * aY(h": g182, h,)
2.1f (h, g, h') € G[H, o°d, r], then
ou(h, g, 1) = (g, h"'h)

>y(g", h"'h)

= oy(h’, g1, h).

Proposition 4.3. If (c, o) : G - H a
multiplication-commuting  Q-fuzzy action
(morphism), then

Yo, o : Gx;H—>Q

Yoo (2, h) = a(r(h), g, h)
is a Q-fuzzy subgroupoid of G*,H.

Proof.

1. If ((g1, h1), (g2, h2)) € Gx,H?, then
Yo, o (8182, hih2) = au(r(h), g1g2, hiho)
> a(r(hy), g1, h1) * au(hi, g2, hihy)

= or(h1), g1, hi) * a(d(hi), g2, ha)
= or(h1), g1, hi) * a(r(hz), g2, ho)
= Y(o, 0)(g1, h1) * Y(o, (g2, h2).

2. If (g, h) € G*x,H, then

Yo, o (8 h) = a(r(h), g, h)
> ah, g, r(h))
= o(d(h), g, b
=Yoo (g, h7)
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5. CONNECTION WITH THE Q-REL
CATEGORY

The category Q-Rel has sets as objects and
fuzzy Q-valued relations as morphisms, with
composition defined via quantale joins and
multiplication.

Let us recall that, given sets X and Y, a Q-
valued fuzzy relation is a function

R:XxY—>Q
interpreting R(X,y) as the degree to which x is
relatedtoy. GivenR : X xY > Qand S: Y x
Z — Q, their compositeis Se R: X xZ - Q
defined by

S o R (x,7) = sup{R(x, y) * S(y, 2), y € Y}
The identity onaset Xis 1x : X x X - Q

n_ (e ifx=x
Ix(x, x') = {0, if x #x'
Let us consider the following subcategory of
Q-Rel, that we call Q-ARel
Objects: sets endowed with groupoid
structure.
Morphisms: fuzzy Q-valued relations R : G x
H — Q, with the property that G and H are
groupoids and there is a map ¢ : H? — G©
such that d(hi) = r(hz)

1. R(g,h)=0if(g, h) ¢ Gx,H

2. R(gig2, hih2) > R(gi, hi) * R(g1, hi) for

all (g1, hi), (g2, ho) € G*,H such that

d(hi) = r(h2).
3. R(g!, h'") > R(g, h) for all (g, h) €
Gx,H

Let us call a relation Q-valued relations R :
G x H — Q that satisfies the above conditions
1, 2 and 3 multiplicative-commuting Q-fuzzy
relation.

Let us remark that if R: G; x G2 — Q and
S: G2 x G3 — Q are multiplicative-commuting
Q-fuzzy relations, then S o R is a
multiplicative-commuting Q-fuzzy relation.
Indeed, let or : Ggo) - Ggo) the map associated

to R and o5 : G§0) - Ggo) the map associated
to S and let 6 = og,g= oroGs. If (X, s) ¢
Gix;Gs, then for every t € G, (x, t) ¢
GixgGaor (t,8) & Goxg G3. Thus, if (X, s) ¢
G1*,G3, og.r(s, 1) = 0.

Let (x1, s1), (X2, $2) € Gi*,G3 such that d(si)
=1(s2). Then
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{t: (x1x2, t) € Gi*g, G2, (t, s1s2) € G2*65G3}
> { t't"It, t,t' € G, such that (x1, t') e Gi*g, G2
and (', s1) € Gax5 G3}.
Hence,
S o R(x1X2, s182) > supt{R(x1X2, t) * S(t, s1s2)}
> suped {R(x1x2, t't"1t) * S(t't"1t, s152)}
> suped {R(x1, t') * R(x2, t"1t) * S(t', s1) *
S(t"t, s2)}
> supr{R(x1, t') * S(t', s1)} * supr{R(x2, t")} *
S(t", s2)}
> S o R(x1, s1) *S o R(x2, s2)
If (x, s) € Gi*,Gs, then

SoR(x!, s

= sup{R(x, t1) * S(t!, s)}=S o R(x, s).

Obviously, 16 : G x G — Q is a multiplicative-
commuting Q-fuzzy relation with respect to ¢
=id: G —» GO,

Proposition 5. 1. The category GrpFAct is
isomorphic to the subcateqory Q-ARel of Q-
Rel.

Proof. Let us define the following functors:
1. F1 : GrpFAct — QARel
G » G, Fi((o, 0)) = Rs, a),
where if (o, o) : G — H is a multiplication -
commuting fuzzy action of G on H, then
Ri, o) : G x H > Q is the Q-valued fuzzy
relation defined by

_ (a(x(h), g, h), if (g, h) € Gx,H
R0 (g )= { 0, otherwise
that is a multiplicative-commuting Q-fuzzy
relation.
2. F>: QARel —» GrpFAct
G » G, F2(R) = (or, Or).
where if R is a multiplicative-commuting Q-
fuzzy relation and or : H? — G© is he map
associated to R, then ar : G[H, o, 1] > Q is
defined by

ar(h, g, h") =R(g, h''h")
for all (h, x, h") € G[H, o, r]. It is easy to check
that (or, air) is multiplication - commuting Q -
fuzzy action of G on H.

If (g, h) € Gx,H,

Fi(F2(R)) (g, h) = a(r(h), g, h) = R(g, h).
Moreover, for (h, x, h") € G[H, o, 1],

F2(Fi(o, o)) (h, g, h") = F2(Rs, o) (h, g, h')=
=R, w(g, h'h’) = a(r(h'h"), g, h''h")
= a(d(h), g, h''h’) = a(h, g, h')
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Since FiF2 = 1gare and F2F1 = lGipracdt
follows that GrpFAct and Q-ARel are
isomorphic categories.

6. CONCLUSION

In this paper we introduced a category whose
objects are groupoids and whose morphisms
are Q-fuzzy actions compatible with the
groupoid structure. This categorical viewpoint
not only clarifies the compositional nature of
fuzzy actions compatible with the groupoid
structure but also opens the door to further
abstractions

By showing that these morphisms can be
realized as Q-fuzzy subgroupoids of a suitably
chosen ambient groupoid, we provided a
structural interpretation that clarifies the nature
of Q-graded fuzzy behavior within groupoids.

Moreover, the categorical isomorphism
with a subcategory of Q-Rel demonstrates that
the proposed framework fits naturally within
the broader relational semantics induced by a
unital quantale.
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